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Introduction

As is so often the case, courses in database design start out with some of the toughest concepts to
grasp. Students are often asked to understand functional dependencies, determinants,
normalization and other such concepts before they can truly appreciate their significance. The
purpose of this text is to help you become familiar with the fundamental concepts behind
Database Design theory by relying on your intuitive sense first. At the end of this article, we will
have designed a database that is normalized to Boyce-Codd Normal Form without ever having
discussed any of the formal concepts.' Instead, the design will draw on common sense. This, in
turn, will help you more easily grasp the formal concepts we will discuss later in the course and
that are indispensable if a comprehensive understanding of the subject of database design is to
be achieved.

We will use a school enrollment system as a backdrop for our discussion. First, we will define
the term “database” and look at its most fundamental building block, the table. We will then
learn how to properly organize data into tables. Once we have determined the tables, we will
need a way to represent the relationships among them, so that we can ask questions such as,
“How many students are enrolled in a particular course?” (This question uses data from two
related tables: the Student table and the Course table.) Against the backdrop of the school
enrollment system, we will examine the types of relationships that can exist among tables, how
to represent these relationships so that our database works properly, and other topics.

While the information in this article does not depend on any specific DBMS such as Oracle,
Access, SQL Server, or others, the implementation of a design does. In other words, you can
decide what tables to use, how they will be related, and so forth, regardless of your DBMS; on
the other hand, how you actually create the tables and relate them will depend on your
particular DBMS.

We start by exploring just what a database is.

! Normalization is a formal approach to database design, and it is a cornerstone of this course. However, it is not
explicitly discussed in this article even though the principles are here in an intuitive sense.

For a formal treatment of database theory, see these sources:

» Date, C., “An Introduction to Database Systems,” Addison-Wesley.

» Elmasri, R. and Navathe, S., “Fundamentals of Database Systems,” Benjamin Cummings.
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Databases: Definition and Purpose

We do many things with databases. We track aspects of an environment, such as the activities of
a medical office or school enrollment system; we produce reports and charts from the data in the
database; we look up data based on a value such as someone’s last name, or based on criteria
such as “everyone living in the state of California;” we anticipate changes in the real
environment based on what we see going on in the database; and so on. All of these things have
this in common: In each case we ask and answer questions about the data. To track data, we answer
questions such as, “What are the courses in which a particular student has enrolled over the past
year?” When we produce reports and charts, we answer questions such as, “What percentage of
patients have improved from taking a particular medication?” When we anticipate changes, we
answer questions such as, “How many students enrolled in each of the past years?” In database
terms such questions are called queries. The process by which answers to queries are obtained is
the process by which data—the raw facts represented in the database—are transformed into
information—the answers to our queries.”

So, the database allows this transformation to occur, but it can only occur accurately if a) the
data are properly organized in the database, and b) the data are related. The issue of how to
properly organize a database is the central topic of discussion in this text, and we will get to it
shortly. As for relationships among the data, it is important not to clutter the database with
unrelated data, as this leads to confusion, and confusion can lead to poor transformations. For
example, we would not store data about horse race results in a database designed to run a
medical office, unless, for example, our medical office were investigating horse race results
among betting patients who are depressed. In the latter case, horse race results would be related
to our other medical records and could be included in the database.

Now, let’s look at this last point from the other side of the coin. The real world, as we know,
has a large set of characteristics and details. When designing a database, we are not typically
interested in all of the characteristics and details of the real world; just those that lie in our
sphere of interest. Database designers refer to this sphere of interest as the mini-world or universe
of discourse. For example, a mini-world might be the aspects of a medical office or school
enrollment system that interest us, such as the names and contact information of all patients,
their medical records, schedule of appointments for each patient, and so on. Data in a database
are related because they belong to the same mini-world.

We can say that a database is a model of a mini-world. If a model of an airplane is built
properly, it will fly like the real thing. Similarly, if we build our database model properly, we can
get accurate transformations (information) from it.

We now define a database:

A database is an organized collection of related data
that models an aspect of an environment in which
we have an interest with the purpose of giving us a
means by which data can be transformed into
information.

2 A quick note on the distinction between data and information: there is a certain amount of relativity here. One person’s
data may be another person’s information. To one person, the fact that John’s birthday is in June and Mary’s is in August
may be data, and, for such a person, the answer to the question, “How many people have birthdays in June?” may be
information. To another person, the fact that John’s birthday is in June may be the answer to a question, and so it would
be information.
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This text focuses on how to properly organize related data and build a model of the mini-
world in which it exists. We will start by looking at the most fundamental organizational
structure of a database: the table.

The Database Table

You may already be familiar with the concept of the database table; it is a two-dimensional object
made up of a collection of rows and a collection of columns. In this section, we will take a look at
a table in a way that may be new to you. We will consider each row in the table to represent an
entity, and each column an attribute. To us, an entity is something that exists distinctly in the
miniworld and that has characteristics (attributes) in which we are interested.

Most of the time we find many entities of the same type, and we can then group them
together. For example, cars may have the following attributes: number of cylinders, number of
doors, horsepower, and others. We can group all car entities together into a car entity-type.
Another example of an entity is a game. Attributes of games might be team A, team B, final score,
number of innings, and so on. (Notice that entities do not have to be physical things, such as
cars, people, houses, books, or trees, but they can also be things like soccer games, weddings,
recitals, campaigns, and others. Anything that has a distinct existence and that has attributes in
which we are interested qualifies as an entity.)

In a database, the job of a table is to represent an entity-type. The rows of the table hold the
individual entities that belong to that entity-type, and the columns of the table represent the
attributes that all of the entities in that entity-type have in common. Figure 1 shows an example
of a table of orders. Each order is an entity represented by a different row of the table, and each
column of the table represents a different attribute of an order, such as order date, salesperson
who placed the order, customer for whom the order was placed, terms of payment, and so on;
all of which help to describe an order entity.

A/MK
Date Salesperson Customer Terms
2/21 | Marjorie B. | Faulk Enterprises Net 30
2/21 | Alan R. The Jones Company Net 30
Entities 3/2 | Raul S. Gardner, Inc. On Receipt
3/13 | Mary B. Johnson Aquarium Goods Net 15
3/14 | Earl G. Amazon Rubber Products 2% Net 30

Figure 1 In a table of orders, each row represents a different order entity (or order), and each column represents an
attribute of orders. Each attribute contributes to the description of the order. The table itself represents an entity-type.
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Can we say that each table must represent only one entity-type? Not necessarily. A table can
represent more than one entity-type only as long as entities in the table can (but may not
necessarilty) belong to any of the entity types, and all of the entity-types share the same
attributes. To illustrate, let's assume we have professors and advisors in our mini-world, and that
advisors are all professors. As long as one does not have any attributes that are not needed by
the other, we can represent both in the same table. Similarly, employees and supervisors can be
represented in the same table, but homes and townhouses, for example, cannot, because
townhouses have an attribute, number of homes, which is not shared by homes.

As simple a concept as a table may at first seem, tables are the single most common source of
problems in a database. Poorly designed tables can result in anomalies in the data, and this can in
turn result in unreliable query results. Let’s see how this can happen.

Designing Tables that Prevent Anomalies

What exactly do we mean by a “well-designed” database? The problem with poorly-designed
databases is that they can present what is referred to as anomalies. Although we will be discussing
anomalies in some detail later, for now we can say that a well-designed database is one that
prevents anomalies from occurring. In what follows, we will design a database together. In the
process, we will see examples of the different anomalies and how to build a design in which they
do not occur.

Since the database will be a model of the mini-world, as we discussed, we will start by
describing the mini-world. In our school, students enroll in sections where a course is taught by
an instructor at a certain time and location. We want to capture information about sections,
courses, professors and students, as well as information about how they relate to each other
(which students are enrolled in which sections and so on). You are probably familiar with such a
mini-world.

How do we start? Most database design problems boil down to one deceptively simple
problem: too few tables! This doesn’t mean that more tables will make the design a better one;
what it means is that a well designed database will typically have more tables in it than a poorly
designed database of the same mini-world. To illustrate, let’s start with just one table to
exaggerate the problem. This will allow us to see the anomalies sooner.

Figure 2 shows what our table might look like after a few students have enrolled. Keep in
mind that, for now, all of our enrollment data are kept in this one table.

Student Student Student Sctn | Sctn | Sctn|  Prof Prof

() _ () Crse Crge Crse

Name Address Phone Days| Time| Loc | Name Address Name |Units| Fee
Marla Faulk |1 First St 934-5437 MW | 7PM |Rm A|Vickie P. |5 Fifth Ave.|243-7759 Introto Jazz | 4 | 500
Tom Lee 2 Second St | 395-2117 M,W | 7PM [Rm A|Vickie P. |5 Fifth Ave.|243-7759 Introto Jazz | 4 | 500
Tom Lee 2 Second St | 395-2117 T,Th | 8AM [Rm B|Mary F. |6 Sixth St. [399-2118 Databases 4 | 650
Yoshi Ohta |3 Third Ave. | 223-9849 M,W | 9AM [Rm A|Vickie P. |5 Fifth Ave |243-7759 Photography| 4 | 450
Haydee Dias |4 Fourth St. | 838-2322 T,Th | 8AM [Rm B|Mary F. |6 Sixth St. [399-2118 Databases 4 | 650
Marla Faulk |1 First St 934-5437 MW | 2PM [Rm C|Mary F. |6 Sixth St. |399-2118 Databases 4 | 650
Yoshi Ohta |3 Third Ave. | 223-9849 TW | 3PM |Rm A|Raul S. |7 7" Ave. |268-2194 Introto Jazz | 4 | 500

Figure 2 A single table used to represent an entire mini-world. We build this table to illustrate anomalies and what
leads to them.
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If you look carefully at figure 2, you can see that there are a lot of redundant (duplicate) data
in the table. Marla’s data (address, phone, etc.) are stored every time she enrolls in a course.
Likewise, every time a student enrolls in the same section, data about that section are stored
(days, time, location, etc.). This is also the case with professors, courses, and any other entity that
might be represented in this table.” Redundancy in data is a problem for several reasons:

1. TItis a waste of storage space. It is unnecessary to represent the same fact more than
once, e.g., that Marla Faulk’s phone number is what it is, the fact that there is an
Introduction to Jazz section taught by Vicke P. in room A on Mondays and Wednesdays
at 7 PM, the fact that Database Systems is worth 4 units, and so on. Facts need only be
represented once. Representing them more than once is a waste of space.

2. TItincreases the chances for errors. The more often we enter data into the system, the
more likely it is that an error will be made when entering it.

3. It duplicates effort. It takes more work to enter data more than once than it does to
enter it only once.

These are the obvious problems that arise when we duplicate data in the database as we
have done in the table shown in figure 2, but there are other problems that, while not as
obvious, are even more serious because they have the potential to defeat the integrity of the
data. We refer to these as anomalies. Let’s continue our list as we examine the three
anomalies.

4. UPDATE ANOMALY. Changing data in one location of a table causes inconsistencies
in the data. Let’s suppose that Marla Faulk moves to another address. If we change her
address in the first row of the table shown in figure 2 to the new address, that new value
would not be consistent with the value shown a few rows below. This presents an
anomaly. In this case, results of queries and reports may be inconsistent and the database
becomes unreliable. In database design terms, this is referred to as an update anomaly. So,
an update anomaly occurs when we must make changes in more than one location in
the database when a single fact changes, such as someone’s address.

5. INSERTION ANOMALY: We must unnecessarily represent certain data to be able to
represent other data. With just the enrollments shown in figure 2, we do not have any
representation of the fact that our school offers other courses, such as Political Economy
or Molecular Physiology. We would have to wait for someone to enroll in these courses
before we had any record of their existence, even though courses have existences that
are distinct from enrollments. While there is a relationship between course entities and
enrollment entities, the existence of a course does not depend on the existence of an
enrollment in the mini-world. When a database shows an existence dependency such as
this one that does not correspond to the realities of the mini-world, the database exhibits
what database designers refer to as an insertion anomaly. So, an insertion anomaly occurs
when the existence of an entity depends on the existence of another entity that belongs
to another entity-type, and when such an existence dependency between the two
entities does not occur in the mini-world.

6. DELETION ANOMALY: We can lose more data than we should if we delete a row.
This is the opposite of the insertion anomaly. If we delete all enrollments for sections of
Introduction to Jazz, for example, we also lose the representation of the fact that we offer
that course. In database design terms, this is referred to as a deletion anomaly. A deletion
anomaly occurs when an entity is lost as a result of the removal of another entity that

? Redundancy in this way does not qualify as a backup! When we capture Marla’s address over and over again, we are not
making a backup, but rather re-representing the data. If we were making a backup, we would be wiser to make a copy of
the entire table.
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belongs to another entity-type, and when such an existence dependency between the
two entities does not exist in the mini-world.

Clearly, it is not a good idea to duplicate data. In particular, an update anomaly affects the
reliability of the results of our queries, and insertion and deletion anomalies make some queries
plainly impossible, e.g., "Which courses are offered by the school?"

Before we look at how to fix these problems, let’s take a moment to examine what is causing
them to happen in the first place.

Identifying the Entity-Types: Eliminating the Cause of Anomalies

Now that we know all these things about tables, can we come up with some rules that can help
us create tables that do not exhibit anomalies? As we will explore later in the course, there is a set
of such rules, referred to as the rules of normalization. Normalization, however, depends on an
understanding of functional dependencies and other concepts that you will learn about later in
the course. The good news is that we don’t need the rules of normalization right now; we can
acquire an intuitive appreciation for what's involved. For now, a good rule of thumb is to verify
that every column (attribute) in the table contributes to the description of what is represented in
an entire row. For example, in a Student table, each column must contribute to the description of
a student; Student Name contributes to the description of a student, as does Student Address,
Student Phone, and so on. If the table contains more than one entity-type, then each column
must contribute to the description of all of its entity types. For example, in a Professor table that
also represents advisors, the Professor Name attribute contributes to the description of both the
professor and the advisor, as does the Professor Address, Professor Phone, and so on. We can see
that the table in figure 2 does not meet this requirement. Student Name and Course Name, for
example, contribute to the descriptions of different parts of the row (entities)—namely, students
and courses—and not the entire row. This means that while the table represents more than one
entity-type, the different entity-types do not share the same attributes, nor can an entity in one
entity-type belong to another entity-type. Because the entity-types are all grouped into the same
table, the problems listed above occur. This is because each time we add data for an entity-type,
we must also represent the data for any related entity-types, causing data duplication, which in
turn leads to the anomalies as we have seen.

To fix the problem with the table in figure 2, we start by creating a table for each entity-type
as shown in figure 3.* (“Section” in figure 3 does not refer to the term used here at Harvard for
gatherings with teaching fellows outside of class. In figure 3, a section refers to occurrences of
courses.)

* Note that the proper way to name tables is to use the singular, as you see in figure 3, because table names refer to an
entity-type. If the table represents more than one entity-type, we name the table after only one of them, or we choose a
name that refers to all of them collectively.
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Intro to Jazz 3 |500 MW [ 7PM| RmA Marla Faulk |1 First St. 934-5437
Databases 4 |[650 T,Th [ 8AM | RmB Tom Lee 2 Second St| 395-2117
Photography 3 [450 MW | 9AM | RmA Yoshi Ohta |3 Third Ave. | 223-9849
Music Theory 4 |[650 MW |2PM| RmC Haydee Dias |4 Fourth St. | 838-2322
Molecular Physiology 4 [650 TW |3PM| RmA
STUDENT
COURSE SECTION
Name Address Phone

Vickie P. (5 Fifth Ave 243-7759

Mary F. |6 Sixth St. 399-2118

Raul S. (77" Ave. 268-2194

Burke W. |8 Eighth Ave. | 268-2194

PROFESSOR

Figure 3 Our revised database design includes a table for each entity-type.

We seem to have resolved the insertion anomaly issue, because we can now represent the
fact that we offer Molecular Physiology even though we may not be offering it in a particular
term, and we can list Professor Burke W. even though he is not teaching any courses this term,
and so on throughout. We seem to have also resolved the deletion anomaly issue, because we
can remove a student from our Student table without having to remove course data from our
Course table, and so on throughout. Also, if a professor’s address changes, we need only change
it in one row of the Professor table, and so on throughout, and so we seem to have resolved the
update anomaly issue as well. Are we out of the woods? Alas, no.

In spite of these sound changes, consider how a user might respond to them. With all the
problems exhibited in the table of figure 2, the user could still use that table to ask questions that
spanned more than one entity-type. Referring to the table in figure 2, we can see that Professor
Vickie P. teaches the Introduction to Jazz section on Monday and Wednesday mornings; that
Introduction to Jazz is offered in two sections, one on Mondays and Wednesdays and the other
on Tuesdays and Thursdays; that there are three students enrolled in Database Systems, and so
on. After our changes, how will the user get the same information? Vickie P. is in the Professor
table, the courses she teaches are somewhere in the Course table, and her sections are
somewhere in the Section table! How will the user answer any question that requires data from
more than one table? In particular, how will the user answer questions such as, “In which rooms
(Section table) are courses with more than 3 units (Course table) being offered?” or “What are the
names and addresses of all students (Student table) taking Introduction to Jazz (Course table)?”

It is clear from questions such as these that much of the information we expect to get from
our database refers to relationships among the entities. Vickie P., a professor entity, obviously has
a relationship with a course entity and a section entity as shown in the table of figure 2. We must
give our database design a means by which to represent these relationships in a manner that
does not cause the anomalies or other problems exhibited in the table of figure 2.
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Identifying the Relationship Types

Between any two related tables,” one of the following three types of relationships exists:

» One-to-one (1:1)
» One-to-many (1:N)
» Many-to-many (N:M)

When relating two tables, it is important to identify which of the three types of relationships
exists between them. This is because each type of relationship is represented in a different way.
To discover the type of relationship between any two related tables, say Table A and Table B, we
ask and answer two questions:

Question 1: For each row in Table A, how many rows can there be in Table B,
one or many?

Question 2: For each row in Table B, how many rows can there be in Table A,
one or many?

As the wording of the questions indicates, the answer to either question must be “one” or
“many” (we use the word “many” to mean “more than one”). If the answer to both questions is
“one,” then the type of relationship is 1:1. If the answer to one question is “one” and to the other
itis “many,” then the type of relationship is 1:N. If the answer to both questions is “many,” then
the type of relationship is N:M.

The following points regarding the two questions are worth noting:

» We use the word "can" rather than "are." This is because we are not looking at only the
particular rows currently in the table, also referred to as the current state of the table, but
rather any state in which the table might be at any time. In other words, even though
there might be only one student enrolled in a particular course (let’s say one day after
the course is first offered), there can be more than one; the possibility is acceptable.

» It is important to ask both questions. One of the most common mistakes made in
determining the type of relationship is to neglect to ask the second question. This is
probably because the two questions are so similar. If the second question is not
answered, a 1:N relationship can appear to be a 1:1, and a N:M relationship can appear
to be a 1:N. Errors of this kind have a profoundly negative impact on the ability of the
database to function properly and are therefore at the same magnitude of undesirability
as are the anomalies.

» The answer to either question will depend on an understanding of the mini-world. For
example, in most schools, sections can have only one professor, and so the relationship
between the two would be 1:N. On the other hand, it is possible to imagine a mini-world
in which a section can have more than one (or “many") professor, as is the case when
professors co-teach a course, and so the relationship between the two in this case would
be N:M.

» With respect to the one-to-many type, there is no distinction here between a
one-to-many and a so-called many-to-one. In other words, it does not matter to which
question the answer “one" or "many" belongs. Some DBMS make the distinction, but this

> Relationships that span more than two tables are beyond the scope of this text; however, they are very similar to
relationships between two tables, and understanding the latter can help understand the former.
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is for purely practical purposes, such as determining which table "drives" the
relationship.’

Let’s apply our strategy to the revised database design in figure 3. We will start with Course
and Section. These two tables clearly relate to each other since a section is an instance of a
course. Let’s ask the two questions:

Q1: For each course (row in the Course table), how many sections (rows in the Section table)
can there be, one or many?

Each course can have many sections. As can be seen in the table of figure 2, Introduction to
Jazz has sections on Mondays and Wednesdays and on Tuesdays and Thursdays. On the other
hand, Music Theory has only one section, but it could have more than one, perhaps if another
room or instructor were available, or if the demand were higher, and so on. The answer to Q1 is
therefore many. Now let’s look at the second question.

Q2: For each section, how many courses can there be, one or many?

It is possible to imagine a school in which a group of students assembled in a room with a
particular professor might be studying both Nuclear Physics and Quantum Mechanics. In this
case the answer to Q2 would be many. We know that the proper answer depends on an accurate
understanding of the mini-world. In our mini-world, we postulate that each section will be
dedicated to one course. So, in our case, the answer to Q2 is one.

We can conclude that the relationship between Course and Section is of the type 1:N. Using
the same approach, we can see that the relationship between Section and Student is of the type
N:M (for each section there can be many students, and for each student there can be many
sections). The relationships between the selected tables in our example so far are of the types
shown in figure 4. For now, we will leave the Professor table out of the picture. We will also
leave the 1:1 relationship type for later.

COURSE SECTION STUDENT

Figure 4 There is a 1:N relationship between Course and Section and a N:M
relationship between Section and Student.

® Many DBMS allow the user to move in either the table on the one side of a 1:N relationship or in the table on the many
side. Depending on the row selected by the user in the table the user is browsing, the DBMS displays the corresponding
row(s) in the other table. The table in which the user is moving is often referred to as the driving or parent table. If the
driving table is the one on the many side, the DBMS might refer to the relationship as a many-to-one. However, this does
not change the fact that for each row in one of the tables, there can be many rows in the other, and that for each row in
the other table, there can be only one row in the first. Which table is “driving” is irrelevant to the type of relationship that
exists between the two!
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It is natural to wonder at this point why we chose to relate the tables in the way we did.
More specifically, why did we not relate Student to Course? Do students not take courses, and
are these two entity-types not therefore related? Of course, they do and they are. We could relate
Student to Course directly, and then Course to Section, but then we would loose some
information. For a given student, we would know the courses that the student is taking, but we
would not know the sections, since for each course there could be many sections. By relating the
tables in the way we did, we have all the information we need. For each student, we know the
section, and, since each section points to only one Course, we also know the course.

There is only one other topic we must consider before we are ready to discuss the issue of
how to represent relationships in the database.

Unique Identifiers, Keys, and Primary Keys

As we have seen, each section in the Section table points to only one course in the Course table.
That section has to be able to locate that one, particular, unique course in the Course table. It can
only do so if each course is somehow uniquely identified. This is done by means of a unique
identifier or key (thought the term key is synonymous with unique identifier, it is not synonymous
with primary key, as we shall soon see). A unique identifier, or key, is a column in the table in
which no two rows have the same value. Let’s look at an example.

Imagine a table of products as shown in figure 5 with a number of attributes, one of which is
Product Name and another of which is Product Category. Different products can belong to the
same category, as is the case between Ka-Pow Tea and Meh-Low Tea. This means that there can
be duplicate values in Product Category. On the other hand, no two products can be called Ka-
Pow Tea! Product Name is a key in the Product table because no two products can have the
same value in that column.

Product Name Category g::t

Jasmine Delight Rice 1.50
Ka-Pow Tea Tea 2.45
Morning Cream Dairy .60
Meh-Low Tea Tea 2.35
Morning Mist Toiletry 2.12
PRODUCT

Figure 5 Product Name is a unique identifier (key)
because no two rows in the table can ever have the
same value in that column.

10
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Tables may have more than one key. Imagine a table called Parking Lot, in which the entities
are all the city parking lots, and in which the attributes are Lot Name, Address, and Capacity. In
such a table, both Lot Name and Address would be unique attributes, or keys. When this
happens, we call each key a candidate key.” But why are they called candidates? For what position
are they being considered? They are being considered for the position of primary key. A primary
key is a key that is chosen to act as the representative of the entities in the table. We could choose
Product Name to uniquely identify each product, and we could choose either Lot Name or
Address to uniquely identify each parking lot. So, should we use Product Name for the Products
table, and, say, Lot Name for the Parking Lot table? Nope! In reality, they are all poor choices for
two reasons:

1. They are too big. As will soon become clear, and as we have been implying all along, we
will be duplicating the primary key values into what you will come to understand as a
foreign key in another table. The larger the primary key, the more data we will be forced
to duplicate.

2. They can all change. Remember that the primary key holds the identity of an entity.
Now, suppose a new products manager decides to rename Ka-Pow Tea to Ker-Bam Tea.
Should this change the identity of the product? In other words, is this now a new
product? Of course not! Primary keys should not be tied to values of attributes, because
we do not want an entity’s identity to change simply because its attributes have
changed. Another way to put this reason is that it is best to make a distinction between
primary keys and data. The values in primary keys should not be considered data,
because they do not describe the entities; they identify them. This distinction will
become very useful later in the course when we discuss normalization.

Because of these considerations, the best primary keys are usually artificial values that have
no inherent connection to the data in the other attributes (furthermore, it is best to use numbers,
since most DBMS can handle automatic increments of numeric values for primary keys). An
assigned number, such as our social security number, can be relatively small, and, because it is
not inherently related to its entity, it will never need to change (the IRS can find you even if you
change the color of your hair!).

Do all tables require primary keys? In principle, the answer is yes, since each entity has a
distinct existence. A distinct existence implies a distinct identity. Identity is represented by means
of a primary key, and so all tables should have a primary key. As we will see later in the course,
weak entity-types do not need primary keys because they are identified in another way. But, and
again as we shall see, even weak entity-types can benefit from having primary keys.

Figure 6 shows our tables with primary keys added.

7 Keys are sometimes referred to as candidate keys even if there are not multiple keys in a table. In this course, the term
candidate key will refer only to keys in tables where there are other keys.
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Course Section Student
Number Number Number
(PK) (PK) (PK)
\ \ \
COURSE SECTION STUDENT

Figure 6 Because all entities have distinct existences, each one has a distinct
identity. The primary key represents this identity in the database, and so all tables
(except weak entity-types, as we will discuss later) should have a primary key. This
figure shows our tables so far with primary keys.

Now that we have seen the types of relationships that exist among our tables and have
explored the concept of the primary key that will allow us to look up and therefore connect
entities from different entity-types, we are ready to turn to the issue of how to represent
relationships in the database. As we have mentioned, each type of relationship is represented in
a different way. Let’s look at the 1:N relationship between Course and Section, first.

Representing a 1:N Relationship

To represent the 1:N relationship, we follow two steps, as listed in Table 1.

Step | Do this:

1 Create a primary key in the table on the one side of the relationship.

2 Create a corresponding foreign key in the table on the many side of the relationship.

Table 1 A 1:N relationship is represented by means of a primary key and a foreign key.

We satisfied the requirement of step 1 in the previous topic, in which we created primary keys
for all of our tables. We created a Course Number attribute for the primary key in the Course
table. To satisfy the requirement of step 2, we also include a column for Course Number in the
Section table. We call this column the foreign key. In a 1:N relationship, a foreign key is a column
in the table on the many side that only has values that can be found in the primary key in the
table on the one side. This allows us to assign a record from the table on the one side to a record
in the table on the many side, as shown in figure 7.

Figure 7 shows our Course and Section tables with primary and foreign keys. In figure 7, we
can see more clearly how the primary/foreign key combination is used to relate the two tables.
Let’s suppose we want to know the number of units for the course taught in a particular section.
The number of units is an attribute in the Course table. We need only take the course number
that appears in the row of that section (foreign key) and look it up in the course number column
in the Course table (primary key). Likewise, if we want to get a listing of all the sections offered
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for a particular course (primary key), we need only filter the Section table to show only those
rows with the proper course number (foreign key).

Course Course
Number Number
(PK) (FK)
¥ ¥
1 N

COURSE SECTION

Figure 7 In a 1:N relationship, we create a primary key
(PK) in the table on the one side of the relationship and a
corresponding foreign key (FK) in the table on the many
side.

Figure 8 shows an example of the two tables with values in both primary and foreign keys.

,\?3:":: r Course Name Units Fee Days | Time |Location ﬁ:;'::r
MJ101 | Intro to Jazz 3 | 500 MW | 7PM| RmA | MJ101
CS303 | Databases 4 | 650 T,Th [8AM| RmB | CS303
FA569 | Photography 3 450 MW [9AM | RmA | FA569
MG521 | Music Theory 4 650 MW [2PM| RmC | CS303
LS709 | Molecular Physiology 4 650 TW |3PM| RmA | MJ101

COURSE SECTION

Figure 8 Our two tables, Course and Section, with primary and foreign keys (Course
Number). To assign a section to a course, we enter the course number into the section
table. Notice that a course number, while unique in the Course table, can appear many
times in the Section table.
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The following points concerning primary keys and foreign keys are worth noting:*

» Only the primary key is unique; the foreign key is not. In fact, that is the whole point! A
value must be able to appear many times in the foreign key column to represent the
many side of the relationship.

> Although we are using the same name (Course Number) for both primary key and
foreign key, most DBMS allow different names to be used.” What is important is that
they both contain the same data.

» Strictly speaking, the foreign key is not considered a “key.” As we defined it above, key
is another term for unique identifier. Thus, a foreign key is not a key; it is a set of values
from the key of another (foreign) table.

Let’s look at the N:M relationship, next.

Representing a N:M Relationship

The solution we developed for the 1:N relationship does not work for the N:M relationship. First
of all, there is no table on the one side of the relationship, so we can not even get past step 1! But
even if we were to force the issue, we would not have a good solution; let’s say we create a
primary key in each one of the tables with a corresponding foreign key in the other table.
Because the relationship is of the type N:M, the primary keys in each table would need many
corresponding foreign keys in the other table. As we will eventually see, this would amount to
creating multivalued attributes, a violation of First Normal Form.'” On an intuitive level for now,
consider the complications of having to work with several foreign keys. How many should we
create? How many students will we allow per section? Of course, this will depend on several
factors, such as room size, number of teaching assistants and other resources available. If we
create fewer foreign keys than we need, we may not be able to represent all the sections for a
particular student, or all the students for a particular section. If we create more than we need, we
will be wasting storage space; if we create fewer than we need, we will not be able to represent
the relationship properly. Clearly, this approach is not a good one.

In order to properly represent a N:M relationship, we must break it down into two 1:N
relationships by means of a third table. Table 2 lists the steps to take when we encounter a N:M
relationship, and figure 9 shows the three tables involved in representing the relationship
between Section and Student.

8 There is much more to the topic of keys (primary keys, foreign keys, super keys, candidate keys) than can be treated in
this article. For a deeper treatment of this topic, please refer to the references outlined under footnote 2.

? The name of an attribute of an entity-type (table column) is actually the role played by the domain of the attribute.
Domain is the set of possible values that an attribute can assume. Suppose we are dealing with a database which models
the activities of a large, interstate shipping company. Suppose further that such a database has a table of shipments. Since
our shipping company can ship goods from any state to any state, there may be a column in the table of shipments called
“Ship To State” and another called “Ship From State.” Although both of these columns share the same domain (the set of
all US states), each column represents a different role that the same domain plays. Similarly, a table of shippers might
have a Shipper ID column as its primary key and a corresponding foreign key called “Ship Via” in the invoice table.
Although the domains are the same, they play different roles in the different tables. In the shipper table, the role of the
domain is one of identity, and in the invoice table it is the role of “the way the order is shipped.”

10 Please see footnote 2 for references that discuss Normal Forms.
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Step | Do this:

1 Create a primary key in both tables.
2 Create a third table.
3 For each of the primary keys created in step 1, create a corresponding foreign key in the third table.

Table 2 Follow these three steps to represent a N:M relationship.

Section Student
Number Number
(PK) (PK)
¥ v
N M
SECTION , STUDENT
1 Section Student
Number Number 1
(FK) (FK)

ENROLLMENT

Figure 9 In a N:M relationship, we create a primary key in each of the
tables and corresponding foreign keys in a third table.

The following points concerning the N:M relationship are worth noting:

» Several names are given to the third table, including but not limited to, intersection table,
intermediate table, combination table, relationship table and even join table. The term join table
is particularly ill-suited, because a join is an operation of a query. While a discussion of
the operations of a query is beyond the scope of this text, suffice it to say that the term
join is not synonymous with relationship. Because the so-called third table embodies a
relationship, the term join is inappropriate. In this text, we will settle on the use of the
term intersection table.
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> Intersection tables are often referred to as relationships since they describe the
relationship between two entity-types.

> “Resolving” a N:M relationship produces two 1:N relationships where the many sides of
both the resulting relationships are on the intersection table, and the one sides are on the
original tables.

» The primary key of an intersection table is usually, but not always, the combination (or
concatenation) of both of its foreign keys."

> Often, the intersection table will play a role that goes beyond simply providing a means
by which to represent the relationship between two other tables. In our example, the
intersection table holds a record of enrollments. It is often appropriate to include other
columns in this table, as long as they contribute to the description of, in our case, an
enrollment (see below). When this is the case, the database design benefits if the
intersection table has its own distinct primary key attribute."

Figure 10 provides an actual sample of enrollments. Each time a student enrolls in a section,
a row is added to the Enrollment intersection table. In the example provided in figure 10, the
first two rows of the Enrollment table show that the same section can have many students. The
second and third rows show that the same student can be enrolled in many sections.

Note that the final grade appears in the intersection table. This is because it does not
describe a student or a section, but rather a student’s performance (or enrollment result) in a
section, and is therefore an attribute of the relationship between a student and a section.

We can see in figure 10 that it is possible to ask questions relating the data in Section and
Student by using the Enrollment intersection table. As an example, suppose we would like a
listing of the names of all students enrolled in a particular section. We need only filter the
Enrollment table to show only the rows that have that particular section number in the Section
Number column and then look up the corresponding student numbers in the Student table. In a
similar fashion, we can find all classroom numbers in which a particular student attends class.
We simply filter the Enrollment table to show only the rows that have that particular student
number in the Student Number column and then look up the corresponding section numbers in
the Section table.

' This works in our example if we assume that the same Section table is used throughout the life of our college and is not
replaced with a new Section table for each term. If it were replaced each term, then the same section number could
appear in the different Section tables. This could be resolved by also replacing the Enrollment table with a new one each
term! To make our design clearer in this regard, we might add a “Term” column in the Section table. Even so, the
primary keys of some intersection tables simply do not work well as concatenated primary keys. Such is the case with an
Orders table that intersects Salesperson, Customer, and Shipper. Clearly, two orders can have the same of all three.
12When we design the database to reflect the realities of the mini-world like this, we make it a more faithful model, and
thus one that more accaurately change as the mini-world changes, or that can grow as the mini-world expands to other
areas of interest.
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Course Number Name Address Phone

Number 99-2005 |Marla Faulk |1 First St. | 934-5437
MJ101A [ MW | 7PM| RmA | Mu101

CS303A | T,Th | 8AM | RmB | CS303
FA569A | MW | 9AM | RmA | FA569
CS303B (MW | 2PM| RmC | CS303
MJ101B | TW | 3PM| RmA | MJ101

Number Days Time Location

98-9928 (Tom Lee 2 Second St. | 395-2117
00-8334 |Yoshi Ohta |3 Third Ave. | 223-9849
99-9931 [Haydee Dias |4 Fourth St. | 838-2322

STUDENT

SECTION

Section | Student Final Date
Number | Number Grade Enrolled

MJ101A | 99-2005 | B+ 4/29
MJ101A | 98-9928 5/3
CS303A | 98-9928 5110
CS303B | 99-9931 4/10
MJ101B | 00-8334 5/5

>|>| 0>

ENROLLMENT

Figure 10 The N:M relationship between Section and Student using the intersection table, Enroliment.

Figure 11 shows our database design so far. We can see in figure 11 that we can now ask
questions that span several of our tables. Can you see how you might answer questions such as,
“What are the names and addresses of all students taking courses with more than 3 units?” We
would first filter the Course table to show only courses where the number in the Course Units
column is greater than or equal to 3. Second, we would find these same course numbers in the
Course Number column of the Section table and display the corresponding section numbers.
Third, we would find these same section numbers in the Section Number column of the
Enrollment table and display the corresponding student numbers. Finally, we would find these
same student numbers in the Student table and display the corresponding names and addresses.

While this procedure might seem unreasonably complicated, the good news is that we do
not have to perform it! It is the job of the DBMS to do this. All we have to do is set up our design
properly, and the DBMS will do the rest. We will see this when we look at queries later in this
course.
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Course Section Course Student
Number Number Number Number
(PK) (PK) (FK) (PK)
v \ ¥ v
1 N
COURSE SECTION _ STUDENT
Section Student
1 Number Number 1
(FK) (FK)
V \
N N
ENROLLMENT

Figure 11 Our database design showing all tables and their relationships so far.

Finalizing the Design

What about the Professor table? How does it factor into our design? We will start by relating the
Professor table to the Section table, since professors teach sections. A professor can teach many
sections, and a section can be taught by only one professor, so the relationship between Professor
and Section is of the type 1:N and, accordingly, we create primary and foreign keys as shown in
figure 12.
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Course Section Course  Prof. Student
Number Number Number Number Number
(PK) (PK) (FK) (FK) (PK)
¥ \ \ ¥ \

1 N
N
COURSE SECTIO\N STUDENT
Prof. Section Student
Number Number Number
(PK) (FK) (FK)
\ ¥ ¥
1
PROFESSOR ENROLLMENT

Figure 12 The Professor table is related to the Section table in a 1:N relationship.

Interestingly enough, this maneuver has resulted in two intersection tables in our database!
The Enrollment table is one of them. Can you see the other?

We can see in figure 12 that the Section table also serves as an intersection table for a N:M
relationship between the Course and Professor tables. There is a primary key in both the Course
and Professor tables and corresponding foreign keys for each in the Section table. What does this
mean intuitively? It means that a professor can be teaching many courses, and that a course can
be “being taught” by many professors. We will explore this in greater detail in just a moment.
For now, notice that in a well-designed database, relationships sometimes reveal themselves
even if the database designer had not originally seen them!

Now, let’s go back and explore the implications of our newly discovered N:M relationship.
The new intersection table, Section, does not show which courses a professor is qualified to teach,
only the courses a professor is teaching. How do we represent the fact that professors are
qualified to teach many courses, and that courses can be taught by many professors? This seems
to be another N:M relationship between the same two tables, Course and Professor! Two
relationships between the same entities? Why not? Think of relationships in your own life. Have
you ever played golf with your boss or used a book as a pillow? You may have a
boss/subordinate relationship with your boss when at work, but on the golf course, your
relationship is one of friends. In fact, there are often several relationships that we maintain with
other people in our lives; there is nothing surprising about that! It seems that professors and
courses are related in two N:M relationships: In one N:M relationship, a professor can be qualified
to teach many courses, and a course can be faught by many qualified professors. In the second
N:M relationship, a professor can be teaching many courses, and a course can be being taught by
many professors. It seems we need a second intersection table between Course and Professor
that shows us which professors are qualified to teach which courses. Our revised design is
shown in figure 13.
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Course Section Course  Prof. Student
Number Number Number Number Number
(PK) (PK) (FK) (FK) (PK)
¥ v { v ¥
Prof.  Course 1 N
Number Number
(FK)  (FK) N
\ ¥
N COURSE SECTION STUDENT
Prof. 1 Section Student 1
Number Number Number
(PK) (FK) (FK)
\ ¥ v
1
QUALIFICATION
N N
PROFESSOR ENROLLMENT

Figure 13 Our final design showing the two N:M relationships between Course and Professor.

Where Does Our Database Go from Here?

One of the characteristics of a well-designed database is that it allows room for growth. Consider
how you might enhance our design to represent the following:

Professors belong to one department.

Courses belong to one department.

Professors can be qualified to teach courses in different departments.
Departments offer majors.

Students are assigned one major.

Certain Professors can be qualified to advise for certain majors.
Students are assigned one advisor for their major.

vVVvVvVvyYVyYVYYVYY

The 1:1 Relationship

The 1:1 relationship is a special case of the 1:N relationship. To represent a 1:1 relationship, we
create a primary key in at least one of the tables, and a corresponding foreign key in the other
table. The foreign key is usually also the primary key of the second table, but it does not have to
be.

To illustrate, let’s suppose that our school wants to send a questionnaire to the students, and
that we can make the following assumptions:
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1. All the questions on the questionnaire are multiple-choice, and each question has only
one possible answer.

2. Each student receives one questionnaire and can therefore submit only one completed
questionnaire as a response.

3. Responding to questionnaires is optional, and as a result, we can expect a very low
response rate. Let’s say that for every 100 questionnaires that we send out, we expect to
get five or ten back. We are expecting at most a 10% response rate.

These assumptions allow us to create a new table, Response, as shown in figure 14, where
each column represents a question in the questionnaire, and each row the responses to all
questions by a certain student. This table relates to Student in a relationship of type 1:1 (for each
student there can be only one questionnaire response, and for each questionnaire response there
can be only one student).

Student | o1 o5 o3 Q4 Q5 Q6 Q7 Q8 Q9

99-2005| Marla Faulk Number
98-9928| Tom Lee
00-8334| Yoshi Ohta
99-9944 | Chris Sheppard
99-2025| Carlos Vargas RESPONSE
98-9926( Thomas Hussey
00-2844| Don O’Brien
99-3383| Elaine Benis
00-7351| George Costanza

99-205 | A|A[(D|[C|C|B|D|A]|A
98-9928| A D|D|C|B|B|A|D]|A

99-2170( Cosmo Krammer

STUDENT

Figure 14 In a 1:1 relationship, we create a primary key in at least one of the tables and a
corresponding foreign key in the other table. The foreign key usually “doubles-up” as a primary key for
its table.

When we encounter a 1:1 relationship, we have to ask ourselves why not simply make one
table out of the two? After all, this will not cause any data anomalies as we saw in the table of
figure 2. The reasons for using 1:1 relationships are practical in nature and not because failing to
do so would violate any of the rules of database design."

In our particular example, assumptions 1 & 2 allow us to create a 1:1 relationship, but
assumption 3 strongly suggests that we do. If we do not—if we simply expand the Student table
instead, so that it includes columns for the questions—we are going to end up with lots of empty
space in our combined table. According to our expectations for a 10% response rate, about 90% of

13 Not using a 1:1 relationship where one is warranted, however, can result in a poor design.
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the combined table will be empty space that is reserved for answers that we never expect to
receive.

Other reasons for creating a 1:1 relationship include security and data distribution. While it is
possible to secure certain columns in a table, it is often more practical to secure an entire table. In
an environment where a single table may be distributed throughout various locations, such as an
employee table in an organization which has its accounting department in one state and its
benefits processing center in another, processing employee records may at times involve 1:1
relationships.

The steps for creating a 1:1 relationship are similar to those for a 1:N relationship. Although
both tables may have the same primary key (as in the example above where Number and
Student Number are the same values), the primary key in one of the tables acts as the foreign
key in the relationship. Which one?

If you look at the relationship between Course and Section once again, you will notice that it
is acceptable to have a course that does not have sections (such an event would mean simply
that such a course was not being offered). We can say that not every row in the Course table
participates in the relationship with the Section table. We say that the Course table has partial
participation in the relationship with the Section table. The same cannot be said for the Section
table. It is not OK to have a section that refers to none of the courses in the Course table. In other
words, every value in the foreign key must match a value in the corresponding primary key.
This means that every row in the Course table participates in the relationship with the Course
table. We say that the Section table has total participation in the relationship with the Section
table.

The situation is similar in the case of the 1:1 relationship. The table with total participation is
the table with the foreign key. In the case of our example of the questionnaire, the primary key
of the Response table acts as the foreign key in the relationship with Student, because the
Response table has total participation in the relationship.
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Summary

We saw that a database is, 1) an organized collection of related data, 2) a model of an aspect of
an environment in which we have an interest, and 3) a tool that gives us a means by which we
can transform data into information. We saw that the fundamental building-block of a database
is the table, and that, in general, a table is required for each entity-type the database needs to
represent. Exceptions are entity-types that share the same attributes and that can share entities.
These can be represented in the same table. We further saw that in order to represent the
relationships that exist between two entity-types, we must identify the type of relationship in
question, because we use a different strategy to represent each relationship-type. We saw that
there are three relationship-types: one-to-one, one-to-many, and many-to-many. We identify
which type of relationship exists between two related tables by asking the two questions shown
in table 1.

We discussed the concepts of unique identifier and keys, including candidate keys and
primary keys, and we determined that artificial numeric values are the best choices for primary
keys. This is because a primary key serves to represent the identify of an entity in the database,
and using values that are inherently tied to the data values of an entity can cause problems. We
also saw that in every relationship there is a primary key/foreign key pair, in which the foreign
key is used to refer to a primary key value in its corresponding table.

When we encounter a 1:1 relationship between two tables, we use the primary key in the
table with partial participation as the primary key in the relationship, and the primary key in the
table with total participation as the foreign key in the relationship. When we encounter a 1:N
relationship, we create a primary key in the table on the one side and a corresponding foreign
key in the table on the many side. When we encounter a N:M relationship, we break it down
into two 1:N relationships by means of a third table. We create primary keys in each of the two
original tables, and corresponding foreign keys in the third table. The primary key in an
intersection table is often the concatenation of the two foreign keys.

We saw that a table does not have to be dedicated to its duties as an intersection table. We
saw that the Enrollment table, initially created as an intersection table between Section and
Student, also represents an entity-type, Enrollment, which has its own characteristics. On the
other hand, the Section table, initially created to represent the Section entity-type, turned out to
also be an intersection table between Professor and Course.

We also saw that related tables can actually have more than one relationship between them,
and that each relationship represents a different way that the two entity-types interact with each
other. The example we provided for this was in how the Course and Professor tables relate to
each other.

We pointed out that the intuitive approach described in this article works regardless of the
DBMS being used, and that different DBMS have different ways of actually implementing
multiple tables and their relationships.

By following the informal steps outlined in this article, it is possible to have a sound database
design (normalized at least to Boyce-Codd Normal Form if not to Domain-Key; the final Normal
Form!) that minimizes the chances of there being anomalies in the data, and allows the database
to grow.
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